Class - IX
Time: 3 hrs.

Sample Paper
M.M.: 90 marks

SECTION - 'A' (carry one mark each)

1. Which of the following is not a whole number?
(a) 1
(b) $\frac{1}{2}$
(c) 0
(d) none of these
2. The value of ' k ', for which the polynomial $2 x^{2}+k x+\sqrt{2}$ has 1 its zero, is:
(a) $-2+\sqrt{2}$
(b) $-\sqrt{2}+2$
(c) $-(\sqrt{2}+2)$
(d) 0
3. Which of the following a zero of the polynomial: $p(x)=a x, a \neq 0$
(a) a
(b) 0
(c) 1
(d) not defined
4. The factorization of $3 x^{2}-x-4$ yields:
(a) $(x-1)(3 x-4)$
(b) $(x+1)(3 x+4)$
(c) $(x+1)(3 x-4)$
(d) $(-x+1)(3 x-4)$
5. In fig; $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=53^{\circ}$, then $\angle D C E$ is:
(a) 88°
(b) 92°
(c) 102°
(d) 108°

6. In fig; side $A B \& A C$ of $\triangle A B C$ are extended to a points $P \& Q$ respectively to points $P \& Q$, also $\angle P B C<\angle Q C B$, then
(a) $A B>A C$
(b) $A B=A C$
(c) $A C>A B$
(d) $A P>A Q$

7. A floral design on a floor is made up of 16 tiles whose triangular sides are $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm . If the area of the 16 tiles is $1411.2 \mathrm{~cm}^{2}$ and the cost of polishing is 50 p per cm^{2} then the total cost of polishing of 16 tiles is:
(a) Rs 706.00
(b) Rs 705.60
(c) Rs 705.50
(d) Rs 704.60
8. The side of an equilateral triangle whose altitude is 4 cm is:
(a) $\frac{2}{\sqrt{3}}$
(b) $3 \sqrt{3}$
(c) $\frac{8 \sqrt{3}}{3}$
(d) $\frac{4 \sqrt{3}}{3}$

SECTION - 'B' (carry two marks each)

9. If $x=1-\sqrt{2}$, find the value of $\left(x-\frac{1}{x}\right)^{3}$
10. Factorize: $(x+2)^{3}+(x-2)^{3}$
11. In fig; if $A C=B D$,

Then prove that $A B=C D$

12. If $x=-\frac{1}{2}$ is a zero of a polynomial $p(x)=8 x^{3}-a x^{2}-x+2$, find the value of a.
13. In fig; AB divides $\angle \mathrm{DAC}$ in the ratio $1: 3$ and $A B=D B$

Determine the value of x

OR In fig;
Find the value of x.

14. A point lies on x axis. What are its ordinates?

If the perpendicular distances of the point from $x \& y$ axes are $3 \& 2$ respectively. What are its co-ordinates?

SECTION - 'C' (carry three marks each)

15. If $a=\frac{2-\sqrt{5}}{2+\sqrt{5}}$ and $=\frac{2+\sqrt{5}}{2-\sqrt{5}}$, find $a^{2}-b^{2}$.

OR
Find the value of $\frac{6}{\sqrt{5}-\sqrt{5}}$, it being given that $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$.
16. Simplify: $\frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}}$

OR

Find the value of a and b if: $\quad \frac{4+3 \sqrt{5}}{4-3 \sqrt{5}}=a+b \sqrt{5}$
17. Factorize: $\quad 8 x^{3}+27 y^{3}=z^{3}+18 x y z$
18. If the polynomial $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+a$ leave the same remainder when divided by $(x-3)$. Find the value of a.
19. If the bisectors of angles $\angle \mathrm{ABC} \& \angle \mathrm{ACB}$ of a triangle ABC meet at a point 0 , then prove that $\angle B O C=90+\frac{1}{2} \angle \mathrm{~A}$ OR
If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.
20. In fig; $A B \| D C$,
if $x=\frac{4}{3} y$ and $y=\frac{3}{8} z$,
Find $\angle \mathrm{BCD}, \angle \mathrm{ABC}$ and $\angle \mathrm{BAD}$

21. In fig; PS is the bisector of angle $\angle Q P R$ and $P T \perp Q R$. Show that $\angle T P S=\frac{1}{2}(\angle Q-\angle \mathrm{R})$

22. In fig; it is given that $A B=E F$,
$B C=D E, A B \perp B D$ and $F E \perp C E$
Prove that $\triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}$

23. In fig;
$A B \| C D$
Find x

24. Find the area of a trapezium whose parallel sides are $25 \mathrm{~cm}, 13 \mathrm{~cm}$, and other sides are 15 cm and 15 cm .

SECTION - 'D' (carry four marks each)

25. Simplify: $\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$

OR
Evaluate $\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{60}}$, is being given that $\sqrt{5}=2.236$ and $\sqrt{10}=3.162$
26. If $=\frac{1}{3-2 \sqrt{2}}, y=\frac{1}{3+2 \sqrt{2}}$, find $x y^{2}+x^{2} y$.

OR
If $x=\frac{\sqrt{3}-\sqrt[4]{2}}{\sqrt{5}+\sqrt{2}}$ and $=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find the value of $x^{3}+y^{3}$.
27. Let $\mathrm{R}_{1} \& \mathrm{R}_{2}$ are the remainder when the polynomials $x^{3}+2 x^{2}-5 a x-7$ and $x^{3}+a x^{2}-12 x+6$ are divided by $(x+1)$ and $(x-2)$ respectively. If $2 \mathrm{R}_{1}+\mathrm{R}_{2}=6$. Find the value of a.
28. Find the value of p and q so that $x^{4}+p x^{3}+2 x^{2}-3 x+q$ is divisible by $x^{2}-1$.
29. Factorize: $\quad a^{3}+3 a^{2} b+3 a b^{2}+b^{3}-8$

30. Plot the following ordered pairs of number (x, y) as points in the Cartesian plane. Use the scale $1 \mathrm{~cm}=1$ unit on the axes.

x	-3	0	-1	4	2
y	7	-3.5	-3	4	-3

31. In fig; AE bisects $\angle \mathrm{CAD}$ and $\angle \mathrm{B}=\angle \mathrm{C}$

Prove that $A E \| D E$

32. In fig; $B M \perp A C$ and $D N \perp A C$ such that $\mathrm{BM}=\mathrm{DN}$.
Prove that $A C$ bisects $B D$.
33. In fig; $A D=A E$
\& $B D=E C$ Prove that $A B=A C$.

34. If two isosceles triangle have a common base the line joining their vertices bisects them at right angles.

