Ashwani Gupta www.AshwaniGuptaMaths.weebly.com 9810817270 gupta.ashwani50@gmail.com 9540258238 Class – IX **Sample Paper** Time: 3hrs. <u>M.M.: 90marks</u> SECTION - 'A' (carry one mark each) 1. Which of the following is not a whole number? (b) ¹/₂ (a) 1 (c) 0 (d) none of these 2. The value of 'k', for which the polynomial $2x^2 + kx + \sqrt{2}$ has 1 its zero, is: (a) $-2 + \sqrt{2}$ (b) $-\sqrt{2} + 2$ (c) $-(\sqrt{2}+2)$ (d) 0 3. Which of the following a zero of the polynomial: p(x) = ax, (a) 🖪 (b) 0 (c) **1** (d) not defined 4. The factorization of $3x^2 - x - 4$ yields: (a) (x-1)(3x-4)(b) (x + 1)(3x + 4)(d) (-x+1)(3x-4)(c) (x+1)(3x-4)5. In fig; $AB \parallel DE$, $\angle BAC = 35^{\circ}$ B and $\angle CDE = 53^\circ$, then $\angle DCE$ is: (a) 88° (b) 92° (c) 102° (d) 108° 6. In fig; side AB & AC of \triangle ABC are extended to a points P & Q respectively to points P & Q, also \angle PBC $< \angle$ QCB, then (a) AB>AC (b) AB=AC (d) AP>AQ (c) AC>AB 7. A floral design on a floor is made up of 16 tiles whose triangular sides are 9cm, 28cm and 35cm. If the area of the 16 tiles is 1411.2cm² and the cost of polishing is 50p per cm² then the total cost of polishing of 16 tiles is: (a) Rs 706.00 (b) Rs 705.60 (c) Rs 705.50 (d) Rs 704.60 The side of an equilateral triangle whose altitude is 4cm is: (a) <u>–</u> (b) 3√3 (c) $\frac{8\sqrt{3}}{3}$ (d) 413 `٠. ...•´`•.•Don't worry, "MEIN HOON NA...!"•.•``•. ...•`

`•.,,.•´`•.•Don't worry, "MEIN HOON NA..!"•.•´`•.,,.•´

19. If the bisectors of angles $\angle ABC \& \angle ACB$ of a triangle ABC meet at a point O, then prove that $\angle BOC = 90 + \frac{1}{2}$

OR

If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

36°

20. In fig; **AB** || **DC**,

if $x = \frac{4}{3}y$ and $y = \frac{3}{8}z$,

Find \angle BCD, \angle ABC and \angle BAD

- 21. In fig; PS is the bisector of angle $\angle QPR$ and $PT \perp QR$. Show that $\angle TPS = \frac{1}{2}(\angle Q - \angle R)$
- 22. In fig; it is given that AB=EF, BC=DE, AB \perp BD and FE \perp CE Prove that \triangle ABD $\cong \triangle$ FEC
- 23. In fig; *AB* || *CD* Find *x*
- 24. Find the area of a trapezium whose parallel sides are 25cm, 13cm, and other sides are 15cm and 15cm.

SECTION - 'D' (carry four marks each)

- 25. Simplify: $\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}} \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}$ OR Evaluate $\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}+\sqrt{80}}$, is being given that $\sqrt{5} = 2.236$ and $\sqrt{10} = 3.162$
- 26. If $=\frac{1}{3-2\sqrt{2}}$, $y = \frac{1}{3+2\sqrt{2}}$, find $xy^2 + x^2y$. OR

If $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ and $= \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, find the value of $x^3 + y^5$.

32°

- 27. Let $R_1 \& R_2$ are the remainder when the polynomials $x^3 + 2x^2 5ax 7$ and $x^3 + ax^2 12x + 6$ are divided by (x + 1) and (x 2) respectively. If $2R_1 + R_2 = 6$. Find the value of a.
- 28. Find the value of p and q so that $x^4 + px^3 + 2x^2 3x + q$ is divisible by $x^2 1$.
- 29. Factorize: $a^3 + 3a^2b + 3ab^2 + b^3 8$

`•.,..•´`•..·Don't worry, "MEIN HOON NA..!"•.•´`•.,..•´

30. Plot the following ordered pairs of number (x, y) as points in the Cartesian plane. Use the scale 1cm = 1 unit on the axes.

a	-3	0	-1	4	2
y	7	-3.5	-3	4	-3
				4	

	D		
31. In fig; AE bisects	A		
$\angle CAD$ and $\angle B = \angle C$	E E		
Prove that $AE \parallel DE$			
32 In fig: BM AC and DN AC	R/	74	
such that BM=DN			
Prove that			
AC bisects BD. A	C D		
33. In fig; AD=AE			
& BD=EC	$O\Lambda^{\Psi}$	۴	
Prove that		A,	
AB=AC. B D E C		$\langle \rangle$	
34. If two isosceles triangle		E	
have a common base	B	C	
the line joining their vertices			
bisects them at right angles.		Ď	
CA	Y		
	•		
× ×			

`•.,..•´`•.•Don't worry, "MEIN HOON NA...!"•.•´`•.,..•´